Nom : |
Prénom : |
Classe : |
Note : |
Date : |
|
|
Pré Requis: Devoir de calculs à maîtriser pour entreprendre l’étude sur … LES FONCTIONS
Les calculs sont à maîtriser pour tout élève qui
entre dans une classe de niveau IV ( bac pro ;)
1) On donne l’équation y = 3,5 x
; calculer :
Si x = 2 |
alors y = |
si x =
-2 |
alors y
= |
Si x =
3/7 |
alors y = |
si x = 5 |
alors y = |
si x =
3/4 |
alors y = |
2) On donne l’équation de la forme : y = a x ; calculer :
si x =
4 |
et y =
6 |
alors a = ……………….. |
si x =
- 2,7 |
et y =
3,2 |
alors a = ………………. |
3) Calculer : Savoir trouver la valeur de
« y » si l’on donne une valeur
à «a ; x ; b » dans les cas suivants : (remplir
le tableau suivant)
Forme y = a x + b |
|
a = |
x = |
b
= |
y = ax + b |
Résultat y = |
3 |
+2 |
+2 |
|
|
-1,5 |
-2 |
+3 |
|
|
+ 2 / 3 |
3 |
1,5 |
|
|
CALCULS |
||
Soit l'équation: |
Pour une valeur de
"x" donnée |
Calculer
« y » ; écrire l’opération |
|
Si x = 2 |
Alors y = ( corrigé : ) |
Y = 3x |
|
|
Y = |
|
|
Y =3x+5 |
|
|
Y =+2 |
|
|
Y =3x2 |
|
|
Y = ; |
|
|
Y =3x2+5x |
|
|
Y =+7x |
|
|
Y =3x2+5x +1 |
|
|
Y =+7x+2 |
|
|
Y = |
|
|
Y = |
|
|
4 ) Résoudre les équations du premier degré suivantes :
A )
45 = 0,5 x |
|
B ) 18 = |
|
C ) 16= x + 0,5 |
|
D ) - 4,6
= 2,5 x + 1,3 |
|
E ) 2,4 = +1,8 |
|
F ) 1,6 =
- 2 ,9 x |
|
5°) Calculer « y » pour les valeurs de « x »
données :
|
||||||
« x » ► |
( - 3,5) |
( - 2) |
( -1) |
0 |
( +1) |
( + 3) |
Y = 3x |
|
|
|
|
|
|
Y = |
|
|
|
|
|
|
Y =3x+5 |
|
|
|
|
|
|
Y =+2 ; |
|
|
|
|
|
|
Y =3x2 |
|
|
|
|
|
|
Y = ; |
|
|
|
|
|
|
Y =3x2+5x |
|
|
|
|
|
|
Y =+7x |
|
|
|
|
|
|
Y =3x2+5x +1 |
|
|
|
|
|
|
Y =+7x+2 |
|
|
|
|
|
|
Y = |
|
|
|
|
|
|
Y = |
|
|
|
|
|
|
6°) Soit l’expression algébrique « b²
- 4 ac » : (
SOS application)
On donne les valeurs de
« a » ; « b » et « c » , calculer « b²
- 4 ac »
|
« a » |
« b » |
« c » |
« b² - 4 ac » |
1 |
2 |
3 |
5 |
|
2 |
( +1) |
( - 2) |
( +2) |
|
3 |
( + 0,5) |
( - 2 , 5) |
( -1) |
|
4 |
( + 4) |
( +2 ) |
( +1) |
|
5 |
0,75 |
0,5 |
3 |
|
6 |
( - 3 ) |
( + 4) |
( - 2) |
|
7°) Soit l’expression algébrique « a x² + bx + c »
; on en tire l’expression « b² -
4 ac » :
Observer l’expression
« a x² + b x + c » , en extraire les valeurs de « a » ;
« b » et « c » , calculer « b² - 4 ac »
|
a x² + b x + c |
« a » |
« b » |
« c » |
« b² - 4 ac » |
exemple |
3 x² + 5x - 4 |
( + 3) |
( +5) |
(-4) |
( +
5)² - [ 4 ( +3) (- 5)]= 25 +60 = 85 |
1 |
-3 x² + 5x + 4 |
|
|
|
|
2 |
0,5 x² - 2x +1 |
|
|
|
|
3 |
x ² - x
+ 2 |
|
|
|
|
4 |
2 x² + 3 x + 2 |
|
|
|
|
5 |
- x² - x + 3 |
|
|
|
|