LECON   N°23

 

 Devoir :         Ÿ    

Remédiation :        Ÿ

Nom :…………

Classe :

Groupe :  

Date :……………

Rattrapage :        Ÿ Soutien :         Ÿ

Prénom :…………

Note  contrôle : 

Note  évaluation : 

 

DEVOIR N°23  sur  : LA FONCTION LINEAIRE  et   ses modèles de représentation mathématique

CORRIGE        

 

 

CONTROLE :

 

 

1°) Donnez le modèle mathématique de l’équation  représentant la fonction linéaire.

 

2°) Que peut-on représenter  avec une équation  représentant la fonction linéaire ?

 

3°) Soit la notation   « ax » , comment nomme - t - on les facteurs ?

 

 

4°) Donnez la forme des couples  qui forment eux mêmes le graphe de la fonction  linéaire.

 

5°)  Donnez la forme du graphe de la fonction linéaire. ( donner les deux couples particuliers)

 

6°)  Représenter le tableau de « proportionnalité ; précisez ce qu’il « contient ».

 

7° ) « a »  (dans le produit de facteurs  associés à la  fonction linéaire) possède trois appellations , quelles sont - elles ?


 

8° )  Définissez   « la   représentation graphique »

      précisez ,en citant les caractéristiques principales ; placer les dans un repère cartésien.

 

 

9° )  Comment reconnaît - on une fonction  dite « linéaire » ?

 


EVALUATION :

 

 

 Soit les fonctions :

 

    y1 = 2x

   y2 = - 2x

      y3 = -

 

1°) Dans un repère cartésien orthonormé ;  Faire  la représentation graphique de chaque fonction .

 

A l' équation          y1 = 2x   

On associe la droite D1  (lire :droite indice 1)

A l' équation          y2 = - 2x

On associe la droite D2 (lire :droite indice 2)

A l' équation          y3 = -

On associe la droite D3  (lire :droite indice 3)

 

 

2°)  En étudiant le graphique , donner les coordonnées du point d’intersection des deux droites D1 et D2;

 

3°)  tracer  D3 

            Ensuite : avec un rapporteur donner la valeur de l’angle faite entre les droites D1 et D3  .

             Quel commentaire pouvez-vous avoir sur la position des droites l’une par rapport à l’autre ?

 

4° )  Faite le calcul  du produit  a1 par a3  .

 

5°) tracer la droite d'équation y4 =    

mesurer l’angle fait par D2   et D4    ; faire le produit a2 a4

 

)comparer les résultats de la question 4° et 5°  ; quelle conclusion peut - on en tirer ?